试题:
已知数列{an}中,a1=1,a2=3,其前n项和为Sn,且当n≥2时,an+1Sn-1-anSn=0.
(Ⅰ)求证:数列{Sn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=
9an
(an+3)(an+1+3)
,记数列{bn}的前n项和为Tn,证明对于任意的正整数n,都有
3
8
Tn
7
8
成立.

答案:

我来补答
(Ⅰ)证明:当n≥2时,
an+1Sn-1-anSn=(Sn+1-Sn)Sn-1-(Sn-Sn-1)Sn=Sn+1Sn-1-Sn2
所以Sn2=Sn-1Sn+1(n≥2).
又由S1=1≠0,S2=4≠0,可推知对一切正整数n均有Sn≠0,
∴数列{Sn}是等比数列.                                   
(Ⅱ)由(Ⅰ)知等比数列{Sn}的首项为1,公比为4,
∴Sn=4n-1.当n≥2时,an=Sn-Sn-1=3×4n-2,又a1=S1=1,
an=
1 (n=1)
4n-2,(n≥2).

(Ⅲ)证明:当n≥2时,an=3×4n-2
此时bn=
9an
(an+3)(an+1+3)
=
9×3×4n-2
(3×4n-2+3)(3×4n-1+3)
=
4n-2
(4n-2+1)(4n-1+1)

b1=
9a1
(a1+3)(a2+3)
=
3
8

bn=
3
8
,(n=1)
4n-2
(4n-2+1)(4n-1+1)
,(n≥2)
.                       
当n≥2时,
bn=
4n-2
(4n-2+1)(4n-1+1)
=
1
4n-2+1
-
1
4n-1+1

Tn=b1+b2+…+bn=
3
8
+(
1
42-2+1
-
1
42-1+1
)+…+(
1
4n-2+1
-
1
4n-1+1
)

=
7
8
-
1
4n-1+1
7
8
.                                 
又因为对任意的正整数n都有bn>0,所以Tn单调递增,即Tn≥T1
T1=b1=
3
8
7
8

所以对于任意的正整数n,都有
3
8
Tn
7
8
成立.
 
 
展开全文阅读
剩余:2000
这些题目你会做吗?