试题:
已知函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称.
(1)求b的值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域.

答案:

我来补答
(1)f′(x)=3x2+2bx+c
因为函数f′(x)的图象关于直线x=2对称,
所以-
2b
6
=2
,于是b=-6
(2)由(Ⅰ)知,,f(x)=x3-6x2+cx
f′(x)=3x2-12x+c=3(x-2)2+c-12
(ⅰ)当c≥12时,f′(x)≥0,此时f(x)无极值.
(ii)当c<12时,f′(x)=0有两个互异实根x1,x2
不妨设x1<x2,则x1<2<x2
当x<x1时,f′(x)>0,f(x)在区间(-∞,x1)内为增函数;
当x1<x<x2时,f′(x)<0,f(x)在区间(x1,x2)内为减函数;
当x>x2时,f′(x)>0,f(x)在区间(x2,+∞)内为增函数.
所以f(x)在x=x1处取极大值,在x=x2处取极小值.
因此,当且仅当c<12时,函数f(x)在x=x2处存在唯一极小值,所以t=x2>2.
于是g(t)的定义域为(2,+∞).
由f′(t)=3t2-12t+c=0得c=-3t2+12t.
于是g(t)=f(t)=t3-6t2+ct=-2t3+6t2,t∈(2,+∞).
当t>2时,g′(t)=-6t2+12t=6t(2-t)<0
所以函数g(t)在区间(2,+∞)内是减函数,
故g(t)的值域为(-∞,8)
 
 
展开全文阅读
剩余:2000
这些题目你会做吗?